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INTRODUCTION .

) Andrew and Fleming (ref 1) discussed the calculation of null geodesics for the
Schwarzchild, Kerr-Newman, and Winicour metrics. Numerical computation employed
FORTRAN code, which was produced by Mathematica (ref 2). The Mathematica code employed
to generate the FORTRAN code for the neutral (Q = 0) Kerr-Newman geodesics was presented.
Reference 1 provides a convincing demonstration of the utility of symbolic manipulation software
for the development of error-free, complex FORTRAN (or C) code. :

In this report, a general approach to problems in tensor analysis (ref 3) employing
Mathematica is described. The standard expressions of tensor calculus are transcribed directly
into Mathematica modules in Part I. The operation of the modules is illustrated as they are
described by application to a simple two-dimensional curved space. The present formulation
allows enumeration and simplification of complex tensor equations, employing built-in
Mathematica functions (such as Expand[], Together[], or Simplify[]).

The code is applied to address some simple problems pertinent to Schwarzchild space-
time in Part II. Employing the built-in Mathematica operator Simplify[], the modules described
produced FORTRAN coded Runge-Kutta geodesic equations for Kerr-Newman space-time in
less than thirty minutes on a 386-based PC operating at 30 MHz. Of course, if simplification
based on more efficient Mathematica operations (e.g., combinations of Apart[], Expand][], and
Together[]) can be achieved, symbolic computation times can be dramatically reduced.
Computation times are much shorter for the Schwarzchild geodesic equations.

PART 1. TENSOR ANALYSIS IN Mathematica

Covariant Metric Tensor

The starting point for a typical problem in tensor analysis is the specification of the
(covariant) metric tensor.

The operation of the Mathematica tensor analysis modules defined here is demonstrated
by applications to geometry on the surface of a helicoid in R? having

_ (1 0
8 = “gu" = 0 C2+X[1][S]2

where the coordinates are x[1][s] and x[2][s] and c is constant. This g is referred to as the
"example metric" in Part I. One encodes this g directly into Mathematica via

g=DiagonalMatrix[{1,c ™2 + x[1][s] " 2}];
Note that coordinates are given in the form x[i][s]. For the current analysis, one could simply

use x[i]. However, as in Part II, one is often interested in derivatives with respect to the line
element s, and we choose to include this dependence from the beginning.




Christoffel Symbols

The first step in a tensor problem is the computation of the Christoffel symbols.
Christoffel symbols of the first kind are defined as

1

I =T, = _(agal + agtB - agaﬂ

oxP oxe ox!

zBa 2

Christoffel symbols of the second kind are given by

I‘iﬁ = Zgbiriap = gbipiaﬂ

where the last equality introduces "summation convention" which is adopted in this report and
the contravariant metric tensor g’ is the inverse of the covariant metric, i.e.,

85 = 8%8;

The following Mathematica module defines the contravariant metric tensor and
Christoftel symbols for arbitrary metric tensors in spaces of arbitrary dimension.

setup[g_]:=Module[{dim=Length[g]},
ginv  =Together[Inverse[g]];
GAMMA =Array[gl,{dim,dim,dim}];
gamma =Array[g2,{dim,dim,dim}];
Do[ Do[ Do[GAMMA[[i,k,j]]=GAMMA[[i,j,k]]=
Together[(1/2)(D[gl[ii[X[K][s]|+
DIg([ki]Lx)s]-Dlel[-kIIx{il[s])],
{i,dim}],{k,j,dim}],{j,dim}];
Do[ Do[ Do[gamma(fi,k,j]]=gamma][[i,j,k]]=
Together[Sum|[ginv[[i,l]]] GAMMA[[L;j,k]],{l,dim}]],
{i,dim}],{k,j,dim}},{j,dim}] ]

N. B,, the partial derivative of a function flu,v,...,x,...]with respect to the variable x is computed
via D[f[uv,...,x,...]|X]in Mathematica. N.B., the Mathematica Together[] operator was effective in
simplifying the resulting expressions for a number of "simple problems.” Of course, the user
could apply an other built-in (e.g., Simplify[]) or user-defined Mathematica operator.

After setup[g] is run, the contravariant metric tensor is returned as ginv, Christoffel
symbols of the first kind are in the array GAMMA, i.e., T = GAMMA([ij,k]), and Christoffel
symbols of the second kind are in the array gamma, i.e., T’ i & = gammal[i,},k]].




To compute the Christoffel symbols and g* for the test metric, enter

setup[g]-

Example: Display gamma for the example metric,
gamma

returns
x[1]s] x[1](s]
{{{0, 0}, {0, x[1][s]}},{{0, b , 0111,
2 2 2 2
c +x[1][s] ¢ +x[1][s]

{{{O’ O}’ {O, ’X[I][S]}}y

Exercise: Code a Mathematica module to compute covariant derivatives.

The Curvature Tensor

The curvature tensor can be computed directly from the I 4
. or, ey
By = —2 -

R g
W=y T o Lelw Tty

Transcription of the expressions for the B; ,, is straightforward,

curvature[gamma_,i_,a_,j_,k_]:=Module[{b,dim=Length[gammal]},
Together|[
Dfgamma([i.a.jj}:x{k][s]-D[gammal[[i,ak]Lx[j][s]]+
Sum|[gamma[[b,a,j]]gamma[[i,b,k]]-
gamma[[b,a,k]Jgammal[i,b,j]],{b,dim}] ]]

and full curvature tensor is returned by
curvature[gamma_J:=Module[{dim=Length[gammal},
B=Array[r],{dim,dim,dim,dim}];
Do[Do[Do[Do[B][i,a,j,k]]=curvature[gamma,i,a,j,k],
{i,dim}},{a,dim}},{j,dim}],{k,dim}};B]

The covariant form, R,; = g,B5 ;. is called the Riemann-Christoffel curvature tensor.




Example: Display the curvature tensor for the example metric

B = curvature[gamma]

returns
2 2
c c
{{{{0, 03, {0, 0}}, {{0, hA-( ), 011},
2 2 2 2
¢ +x[1])fs] ¢ +x[1][s]
2 . 2
c c
{{{0, «( A » 031,{{0, 0}, {0, 0}}}}
2 22 2 22

(¢ +x[1is]) (¢ +x[1][s])

The Ricci Tensor

The Ricci tensor plays an important role in relativity theory. It is defined as a
contraction of the curvature tensor,

or;, ars;
Ry = Bay = —, - —= + T,Ty, - [Ty,
ox’  ox*®

Thus, to Print[] the components of R, = BY «» €nter the Mathematica statement
Do[Dol[Print["R(",i,",",j,") = ",Simplify[ Sum([B[[a,i,a,j]]},{a,2}] ] ],
{i.2}], {2}

which yields
2
C
R(1,1) = ~-oememeee
2 22
(¢ +x[1][s] )
R(Z1) =0
R(1,2) =0
2
c
R(2,2) = ~--oemmmeee
2 2
¢ + x[1][s]

N.B., Sum|[expression,{i,n}] returns the sum of expression evaluated for i-values running from 1
to (the integer) n. Dolexpression,{i,n}] works similarly.




We also transcribe separate Mathematica modules to compute the Ricci tensor,

Riccifgamma_,i_,j_]):=Module[{m,n,dim=Length[gammal},
Together[Sum[D[gamma[[m,i,m]],x[j][s]}-D[gamma][[m,i,j]].x[m][s]]+
Sum[gamma([n,i,m]]gamma|[m,n,j]]-
gamma[[n,i,j]]gamma[[m,n,m]],{n,dim}},{m,dim}]]]
and
Ricci[gamma_J:=Module[{dim=Length[gammal]},
R=Array[rl,{dim,dim}];
Do[Do[R([[i,j]]=Ricci[gamma,i,j],{i,dim}],{j,dim} ;R]

Example: Direct computation of Ricci tensor for the example metric.

Ricci[gamma]
returns
2 2
C c
e 1) SR (I R 3
2 22 2 2
(c +x[1][s]) ¢ + x{1][s]

which is identical to the results obtained by contraction of B, as expected.

Exercise: Compute the Christoffel symbols and Ricci tensor for

100
l&sl = {0 1 ©
001




PART II. APPLICATION: THE SCHWARZCHILD METRIC .

Development of a spherically-symmetric lg,{l consistent with the Einstein equations.
Assumption: gl is spherically-symmetric. Assume that

L o 0 0
) ) -r? 0 0
A I PR ~risin%@) 0

0 0 0 Mir]

Lix[1][s1] 0 0 0
o [1][sP 0 0
o 0 -x[1)[sPsin*(:{21s]) 0

0 0 0 ML)

where the functions L{r] and M[r] are to be determined. Encode via,.
g=DiagonalMatrix[{L[x[1][s]],-x[1][s] " 2,-(x[1][s]Sin[x[2][s]]) ~ ZM[X[1][s]}}];

Conventional Notation

Direct substitution is achieved in Mathematica, via the construction
expression/.u->v

which returns expression with occurrences of u replaced by v. Thus, to present output in
{r.q,j,t}-form, define the following replacement rules:

rt={x[1][s]->1,x[2][s]->q,x[3][s]->].x[4][s]->1};

N.B., Mathematica 2.1 does not have Greek fonts. We substitute j for phi and q for theta here

and in the sequel with a text editor.

Compute the Christoffel symbols, etc.

setup[g];




The Einstein Equations
The Einstein equations require that R; = 0. Compute and display the Ricci tensor.
R=Simplify[Ricci[gammal]}/.rt
returns the Ricci tensor for the spherically-symmetric metric function,
2
L[r] LMl Ml M7r]
{{'( ) - - + ’ 0, O’ O}s

rL[r] 4 L[r] M[r] 2 2 M[1]
4 M[1]

1 rL[r] rMr]
{0,-1--—-+ - , 0, 0},
L[r] 2 2 L[] M[r]
2 Lr]

2 2
{0, 0, (Sin[T] (-2 L[r] M[1] - 2 L[r] M]r] +

2
r M[r] L'[r] - r L{r] M[r])) / (2 L{r] M[x]), 0},
2

Mr] L[r]MTr]  MTr] M™[r]
{0, 0, 0, - - +
r Ljr] 2 4 L[riM[r] 2 Ljr]
4 Lr]

Solution of the Einstein Equations

We seek functions L{r] and M(r] such that the Einstein equations are satisfied.
Step 1. Eliminate the M”[r] terms from the 1,1 and 4,4 parts of R; = R[[i,j]] = 0.
temp=((Simplify[(R[[1,1]]M[r[s]]-R[[4,4]]L{r]s]])/.rt])==0)
returns
M[r] L'[r] + L[r] M’[r]

< ) ==0
r Lfr]




Step 2. Solve for L[r] in terms of M[r]. Use

-1 0 0 0]
0 -1 00
P “lo o -10
0 0 0 1

and the Mathematica operator DSolve[] to obtain Rule0:

Rule0=ExpandAll[Flatten[DSolve[
{L{Infinity]==-1,M[Infinity]==1,temp},L[r],r]]]

Mathematica issues a "warning:"

Solve:ifun:
Warning: Inverse functions are being used by Solve, so some solutions may not be found.

then returns the solution of interest

Step 3. Mathematica will not apply the rule for L[r] to replace L’[r]. Thus, one specifies
a separate rule for L’[r] and defines Rulel as follows:

Rulel=Flatten[{Rule0,Solve[temp,L’[r]]/.Rule0}]/.r->x[1][s]

which returns

1 MI[x{1]]s]]
{L[1[s]] -> ~(--vooooeoeeee o LIK[L[s]] -> wrrveenne }
MIx[1]}s]] 2

M{zf1][s]]

N.B,, Flatten[{{u},{v}}] returns {u,v}, etc. Thus, the subrules comprising Rulel will be
applied consecutively.

Step 4. Use Rulel and R,, = 0 to define the form of M. Express M in a rule (Rule2).

RuleZ=Flatten[DSolve[
0==Factor[Expand[R[[2,2])/.Rule1]}/.rt, M,] ]

which returns the rule governing the function M,




: C[1]
M->1+ &)}
#1
where C[1] is a constant of integration. The rule on the function works as expected, i.e.,

MIx[1][s]}/-Rule2
returns

The Schwarzchild Metric

Applying Rulel and Rule2, one obtains the form of the spherically-symmetric metric
tensor consistent with R = 0:

gw=g/.Rulel/.Rule2/.rt

returns
1 2
O C—— ), 0, 0, 0}, {0, -r, 0, 0},
C[1]
14 -
T
2 2 C[1]
{0, 0, -(r Sin[q] ), 0}, {0, 0,0,1 + -—--}}

r
As expected, this is the Schwarzchild metric form. The usual form of the metric tensor is
obtained by identifying the integration constant C[1] with -2 G M/c?, where G is the gravitational
constant, M is the central mass, and c is the speed of light.
Exercise: Demonstrate that R = 0 for Schwarzchild gravitation.

Exercise: The geodesic trajectories are given by solutions of the geodesic equations

d*[is] . T dx[alls] dx[Blls] _ 0
2 «p
ds ds ds




Derive the geodesic equations for
100

lg;l =Jo 10
001

Exercise: Derive the geodesic equations for the "example metric,"

1 0
0 x[1][s]? +c?

g, =

Exercise: Planetary orbits.
1. Derive the geodesic equations for the Schwarzchild metric.
2. Demonstrate that if q[0] = p/2 and q’[0] = 0, then q[s] = p/2.
a. Express the geodesic equations for qfs] = p/2.
3. Show that rfs]~2 j’[s] = h = constant.
4. Show that (1 - (2G M/c?) / r[s]) t'[s] = K = constant.
5. Use the results of parts 1 through 4 and

ds® _  ax[ills] dxllls]

1= )
ds? Y ds ds

4
= g IsIx[lIs] ~ ) gxilIs)
i1

to derive the Mathematica expression

2 2 2
K b))
C[1 2 1

1+ e x[1][s] 1+ e

x[1][s x[1]{s]

10




6. Make the change of variables,

x(1]{s}->1/u[x[3][s]},

and employ the condition derived in 3, to establish that

(x[1])[s] -> -(h W[x[3][s]])
and derive the equations:

2 2 2
2 2 K h w’[phi]
1 == -(h y[phi]) + -
1 + C[1] u[phi] 1 + C[1] u[phi]

2
2 2 2 K C[1] u[phi] 3
u'[phi] + ufphi] == -h + - - coeeeeeee - C[1] ufphi]
2 2
h h

and
2
C[1] 3 C[1] u[phi]
u”’[phi] + u”[phi] == -(---) - ==-mmmmmo-
2 2
2h

The last equation for u[phi] (= 1/r[j]) frequently serves as the basis for a discussion of the
advance of the perihelion of planetary orbits. See, for example, Crandall (ref 4). How should

this approach be modified to treat photon trajectories?

Exercise: Compute the Christoffel symbols, curvature tensor, Ricci tensor, and geodesic
equations for charge-free (i.e., Q = 0) Kerr-Newman gravitation. Demonstrate that R = 0 for

the Kerr-Newman metric.

11
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